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SMOOTH NONPARAMETRIC QUANTILE ESTIMATION UNDER
CENSORING: SIMULATIONS AND BOOTSTRAP METHODS

W. J. Padgett and L. 4. Thombs

Department of Statistics
University of South Carolina
Columbia, South Carolina 29208

ABSTRACT

Based on right-censored data from a lifetime distribution F _,
a smooth nonparametrlc estimator of the quant11e function Q° (p) is
given by Qn(p)_h IOQ (t)K((t-p)/h)dt, where Q (p) denotes the
product-limit quantile function. Extensive Monte Carlo simula-
tions indicate that at fixed p this gernel—type quantile estimator
has smaller mean squared error than Qn(p) for a range of values of
the bandwidth h. A method of selecting an "optimal" bandwidth (in
the sense of small estimated mean squared error) based on the
bootstrap is investigated yielding results consistent with the
simulation study. The bootstrap is also used to obtain interval

estimates for Qo(p) after determining the optimal value of h.

1., INTRODUCTION

Arbitrarily right-censored data arise naturally in industrial
life testing and medical studies. In these situations it is
important to be able to obtain good nonparametric estimates of
various characteristics of the unknown lifetime distribution. One

characteristic of the lifetime distribution that is of interest is

the quantile function. For right-censored data, Sander (1975)

PR I

e e




proposed estimation of the quanfil? function by the product-limit
' | quantile estimator, defined by QnEFgl, vhere in denotes the
product-limit estimator of the lifetime distribution function Fo
2 (Kaplan and Meier, 1958; Efron, 1967). Sander (1975) and Cheng
(1984) obtained some asymptotic properties of 6n’ and Cs6rgo
(1983) discussed strong approximation results.
The product-limit quantile estimator is a step function with
jumps corresponding to the uncensored observations. A smoothed

nonparametric estimator of the quantile function from right-

T os & s A RdA

censored observations based on the kernel method was proposed

by Padgett (1986), extending the complete sample results of Yang
. (1985). Lio, Padgett, and Yu (1986) and Lio and Padgett (1985)
; studied some of the asymptotic properties of this kernel
estimator, including asymptotic normality and mean square
convergence.

In general, the effective performance of nonparametric
function estimators is critically dependent on the choice of a
"smoothing parameter." If not enough smoothing is done, the
estimate will be "rough," showing features which do not represent
2 the function being estimated. On the other hand, if too much
x smoothing is done, important features of the curve may not show up
since they are essentially smoothed away (Marron, 1986). For
? kernel-type estimators, the smoothing parameter is often called
the "bandwidth," and an important question that arises is: Given
. a set of data, what value(s) of the bandwidth are best to use in

calculating the smooth estimator in the sense of minimum mean
s | squared error, or with respect to some other criterion?
. The objectives of this paper are two-fold. One is to report
. results of extensive Monte Carlo simulations which demonstrate the
R behavior of the mean squared error of the kernel estimator with
respect to bandwidth. These simulations provide a method of
choosing an optimal bandwidth when the form of the lifetime and
: censoring distributions are known. Also, they compare the kernel-
. type estimator with the product-limit quantile estimator. Five
commonly used parametric lifetime distributions, two censoring

mechanisms, and four different kernel functions are considered in
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this study, which is an extension of the brief simulations for

exponential distributions reported by Padgett (1986).

The second objective is to present a nonparametric method for
bandwidth selection based on the bootstrap for right-censored
data. This data-based procedure uses the bootstrap to estimate
mean squared error, and is both an_extension and modification of
the methods proposed by Padget{/zzggg;{ Bandwidth selection
using the bootstrap is important for small and moderately large
samples since no exact expressions exist for the mean squared
error of the kernel-type quantile estimator. -~ Lio and Padgett
(1985) obtained an upper bound on the mean square convergence rate
of the kernel quantile estimator under random right-censorship,
but the bound is not sharp and does not readily lead to an
optimal choice of the bandwidth in the sense of minimum mean
squared error. The bootstrap also provides a method of obtaining
confidence intervals for the unknown quantiles or more generally,
confidence bands for the quantile function. Two such intervals
are presented in this paper.

In Section 2, the estimators and some of their asymptotic
properties are discussed. The simulation results are reported in
Section 3. The bootstrap bandwidth selection procedure is
presented in Section 4, and some examples are given which
indicate that the data-based nonparametric method yields optimal
bandwidths which are consistent with the Monte Carlo results of
Section 3. 1In Section 5, two bootstrap confidence interval
procedures are presented along with some convergence results which
provide asymptotic validity for the bootstrap in this setting of

quantile estimation.

2. NOTATION AND PRELIMINARIES

Let X?

individuals that are censored on the right by a sequence

o . . .
,...,Xn denote the true survival times of n items or

Ul""’Un’ vhich in general may be either constants or random
variables. The X?’s are nonnegative, independent, identically

distributed random variables with common unknown distribution

function Fo and unknown quantile function Qo(p)sF;I(p)=
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=inf{t:Fo(t)2p}, 0<p 4.
The observed right-censored data are denoted by the pairs
(Xi,Ai), i=1,...,n, where

o 1ifX(1.’5Ui
X. = min{X;, U.}, s, =
1 1 1 0 if X9 > U, .
i i
Thus, it is known which observations are times of failure or
death and which ones are censored or loss times. The nature of

the censoring depends on the Ui's. (i) If Ul""’Un are fixed

L7 S TN By R & GRS ¥ & T - O T

constants, the observations are time-truncated. If all Ui’s are
equal to the same constant, then the case of Type I censoring
results. (ii) If all Ui = X?r)’ the rth order statistic of

Xg,...,Xg, then the situation is that of Type II censoring. (iii)
If Ul”"’Un constitute a random sample from a distribution H

-

(usually unknown) and are independent of X?,...,Xg, then (Xi’Ai)’

i=1,2,...,n, is called a randomly right-censored sample.

For the asymptotic results of Padgett (1986), Lio, Padgett,
and Yu (1986), and Lio and Padgett (1985), the random censorship
model (iii) was assumed. For this model the distribution function
of each Xi is F=1—(1—Fo)(1-H).

A popular estimator of the survival function 1—Fo(t) from the
censored sample (Xi’Ai)’ i=1,...,n, is the product-limit (PL)
estimator of Kaplan and Meier (1958). The PL estimator, which was
shown to be "self-consistent" by Efron (1967), is defined as
follows. Let (Zi’Ai)’ i=1,...,n, denote the ordered Xi's along
wvith their corresponding Ai's. Values of the censored sample will
be denoted by the corresponding lower case letters, (xi,si) and
(zi,ki), for the unordered and ordered sample, respectively. Then
the PL estimator of 1—Fo(t) is

1, 0tz

1’
. A,
- k-1 n-i 1
Fa(t)= n [ﬁT] S A A
i1 s n-is
0, z <t

The PL estimator of F (t) 1s denoted by F (t) 1- P (t), and the
size of the jump of Pn (or Fn) at ZJ is denoted by sJ. Note that




LA

Sj=0 if and only if Zj is censored for j<n, i.e. if and only if
i .
)j= . Define Si =jflsj = Fn(zi+1)’ i=1l,...,n-1, and Snal.

A natural estimator of Oo(p) is the PL quantile function
6n(p)=inf{t:%n(t)2p] (see, for example, Sander (1975), C?eng
(1984): and Csorgo (1983) for some of the properties of Qn)'
Since Qn is a step function with jumps corresponding to the
uncensored observations, it is desirable to obtain a smoothed
estimator of Q°. The kernel smoothed 6n’ considered by Padgett
(1986), Lio, Padgett and Yu (1986), and Lio and Padgett (1985), is
such an estimator, and is defined as follows: Let {hshn} be a
"bandwidth" sequence of positive numbers so that hnﬁo as n->», and
let K be a bounded probability density function which is zero
outside a finite interval (-c¢,c) and is symmetric about zero.
(For asymptotic results, other conditions on hn, K, and Fo are
needed, but these are the only assumptions that will be made

here.) Then for 0<p<l, the kernel quantile function estimator is

given by
-1.1°
Q_(p) = h™" [5Q (1)K((t-p)/h)dt
105y
=h " I ZiIS K((t-p)/h)dt, (2.1)
i=1 i-1

wvhere SOEO. An approximation to Qn(p) wvas given by Padgett (1986)
as

- N

On(p)=h iflzisiK((Si—p)/h). (2.2)

Although neither estimator is difficult to compute, (2.2) will be
simpler for some kernel functions.

The asymptotic normality, asymptotic equivalence, and mean
square convergence of (2.1) and (2.2) were studied by Lio, Padgett
and Yu (1986) and Lio and Padgett (1985). However, no small
sample properties have been derived. 1In fact, due to the
mathematical complications introduced by censoring, an exact
expression for the mean squared error of Qn(p) for small n is not

available. Thus, a bandwidth value minimizing the exact mean

squared error of Qn(p) cannot be obtained. A practical method for




selecting bandwidth is discussed in Section 4. First, in the next
section, a large simulation study is reported which gives compar-
isons of 0n and an with 6n and gives an indication of the behavior
of these estimators with respect to the bandwidth values, the
censoring mechanism, the kernel function, and sahple size, using

the mean squared error criterion.

3. COMPARISON OF ESTIMATORS: SIMULATION RESULTS

A Monte Carlo simulation was performed for five families of
lifetime distributions that are commonly used in life testing.
These distributions are shown in Table 1. Two censoring

-

distributions H were used: exponential with density h(u) = X ",

u>0, X0, and uniform on the interval (0,2), 0. 1In addition,
three different kernel functions were chosen as K, (x)=1- I,
le(l (triangular), K (x) 3/74(1-x ), |x]<1 (quadratlc), and
Ky(x)=1, |x]<0.5 (unlform). Also, the uniform kernel on [-1,1]

vas used, producing similar results as K3.

TABLE 1. Lifetime Distributions Used in Simulations

Distribution Density Notation

Exponential f£(x)=Bexp(-px),x>0 E(B): 81
afxYo-1 K)o
Weibull f(x):B&J exp[—[é] ], V(e B):
>0 (e« 8)=(0.5,1),(2,1),
(2,5)
1 1
Gamma f(x)= Oga_ exp(-x/B), G(a, B):
(B (e, 8)=(0.5,1),(2,1),
x>0 (2,5)
1 " (log X-o)?
Lognormal f(x)= ;%P |- ], Lo, B):
eotec | 26 (« 8)=(0,1),(2,0.5)
x>0
A % [ >\(x—u)2
Inverse f(X)=L;__§] exp '_’TT_—}’ IG(u, N):
Gaussian ™ | 2u"x (1, N)=(1,0.25),
x>0 (3;1)

The parameter X\ of the censoring distribution was determined

to give either 307% or 50% censoring. That is, X was determined
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so that the probability of a censored observation, Pr(X°>U)=0.3
or 0.5, at least approximately. This probability was calculated
by numerical integration using the midpoint rule when it could not
be obtained exactly. The value of X is reported in the resulting
table for each case. ’
Bandwidth values of h=0.01 (.02) 0.61 were used for quantiles ‘
at p = 0.10, 0.25, 0.50, 0.75, 0.90, and 0.95. Sample sizes of j
n=20, 50, 100, and 300 were chosen, although only the results for
n=50 and 100 are shown in the tables presented here for brevity. !
In each case simulated (i.e. each distribution, kernel,
bandwidth, p, and sample size combination), 1000 censored samples
were generated using the random number generators in the
: International Mathematical and Statistical Library (IMSL, 1982) on
an IBM 370 computer. In particular, for uniform random number
generation, the IMSL subroutine GGUBS was used; for exponential
random numbers, GGEXN; for Weibull, GGWIB; for gamma, GGAMR; and
for lognormal, GGNLG. For generating random numbers from the

inverse Gaussian distribution, the method discussed in Michael,

O N

Schucany, and Haas (1976) was utilized. From the 1000 samples,

the estimated mean squared errors (MSE) of the estimators Q (p),

Q (p) and 0 (p) were computed, and the ratios of these estlmated
mean squared errors, A=(MSE O /MSE Q ) and B=(MSE Q /MSE 0 ), were

calculated.

Some of the results of the simulations are shown in Tables 2-
9. In each case, for each p, there is a range of bandwidth values
for’which Qn(p) has smaller estiTated mean squared error than that
of On(p). The same behavior of Qn wvas observed, except that the
best bandwidth values were generally larger thag those for Qn’
indicating that more smoothing is required for Qn'

Parzen (1979) indicated that kernel estimators of quantile
. functions do not generally give good estimates for p near zero or
one since quantile functions are usually nonintegrable. This is
quite noticeable for Qn and 6n in Tables 2-9 for p near one,
although for some values of h, 0n is still better than the PL
quantile estimafor. Also, it should be noted that as h-0 for

PN YRS

fixed n, Qn(p)*On(p) and hence the ratios of mean squared errors
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TABLE 3. RATIOS OF MEAN SQUARE ERRORS WITH QUADRATIC KERNEL

LIFE DISRIBUTION: E{1) , CENSORING DISTRIBUTION: E(3/7)
n = 100 (30% CENSORING)

.01 0.05 ¢.11 ©0.15 o0.21 ©0.25 0.31 0.35 0.41 0.45 0.51 0.55 0.61
.02 1.16 1.36 1.44 1.23 0.97 0.61 .44 . . . . .08
.79 1.29 1.55 1.70 1.56 1.24 0.77 0.54 0,33 0.25 0.16 0.13 0.09

oo
o o
=3

.10 A

o

=
o
~
o
(=]
L8]
-
o
-
&
o
-
-
o

0.25 A{1.02 1.08 1.17 1.23 1.29 1.30 1.25 1.15 0.92 0.75 0.52 0.40 0.27
B[{0.82 1.16 1.26 1.33 1.43 1.48 1.48 1.40 1.16 0.95 0.66 0.51 0.34

0.50 A{1.01 1.06 1.12 1.14 1.15 1.12 1.01 0.90 0.68 0.53 0.33 0.29 0.30
B|0.77 1.11 1.19 1.24 1.30 1.31 1.28 1.20 1.00 0.84 0.59 0.44 0.41

0.75 Al1.03 1.07 1,09 1.05 0.86 0.67 0.73 1.01 1.37 1.20 0.75 0.54 0.36
B|0.12 1.21 1.38 1.45 1.49 1.42 1.24 1.41 1.46 1.16 0.70 0.51 0.34

0.90 A[1.10 1.32 1.44 2.06 1.22 0.77 0.48 0.38 0.30 0.26 0.22 0.20 o0.18
B{0.07 1.18 1.83 2.28 1.21 0.78 0.48 0.39 0.30 0.26 0.22 0.21 o0.18

(=]

0.95 A|1.06 .34 0.96 .55 .34 0.28 .23 0.21 0.19 0.17 0.16 0.15 0.14
B|0.07 0.40 1.07 0.61 0.37 0.30 0.24 0.22 0.19 0.18 0.16 0.16 0.15

-
(=3
o

A= (MSE Q )/(MSE Q ), B = (MSE Q )/(MSE Q )
n n n n

TABLE 4. RATIOS OF MEAN SQUARE ERRORS WITH UNIFORM KERNEL

LIFE DISTRIBUTION: E(1}) , CENSORING DISTRIBUTION: E(3/7)
n = 100 (30% CENSORING)

h
P 0.01 0.05 ©0.11 0.15 ¢.21 0.2% 0.31 0.35 0.41 0.45 0.51 0.55 0.61
0.10 AJ1.02 1.10 1.24 1.32 1.45 1.48 1.34 1.16 0.87 0.71 0.51 0.41 0.30
Bj0.64 1.25 1.42 1.47 1.67 1.71 1.63 1.46 1.09 0.88 0.63 0.49 0.36
0.2¢ Aj1.02 1,06 1,12 1.16 1.21 1.24 1.29 1.30 1.30 1.28 1.23 1.17 1.03

0.24 0.93 1.11 1.19 1.27 1.32 1.41 1.45 1.49 1.47 1.46 1.41 1.29

0.50 Aj1.00 1.03 1.08 1.i1 1.13 1.14 1.15 1.14 1.10 1.06 0.97 0.89 0.76
B|0.06 0.68 1.02 1.10 1.1 1.19 1.25 1.25 1.30 1.27 1.21 1.15 1.06

0.75 Af1.02 1.05 1.08 1.08 1.07 1.02 0.90 0.78 0.60 0.48 0.41 0.68 1.22
BJ0.03 0.52 1.03 1.18 1.°t 1.26 1.24 1.23 1.11 0.96 0.3% 0.66 1.20

0.9¢ all1.07 1.26 1.35 1.35 1.61 2.06 1.18 0.82 0.55 0.45 0.36 0.31 0.27
B|0.03 0.47 1.10 1.07 1.34 2.12 1.32 0.90 0.58 0.47 0.37 0.32 0.28

0.95 A}1.03 .20 1.63 1.08 .42 0.32 .28 0.24 0.22 0.20 0.19 0.18
B|0.03 0.36 1.06 1.30 0.66 0.47 0.35 0.30 0.25 0.23 0.21 0.20 0O.18

[
o
o
wn
(=]
o

A = (MSE Q )/(MSE Q ), B = (MSE Q )/(MSE Q )
n n n n
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TABLE 5. RATIOS OF MEAN SQUARE ERRORS WITH TRIANGULAR KERNEL

LIFE DISTRIBUTION: E(1) , CENSORING DISTRIBUTION: U(0, 3.1941)
n = 100 (APPROX. 30% CUNSORING)

h
P 0.01 0.05 0.11 ©0.15 ©0.21 0.25 0.31 0.35 0.41 0.45 0.51 0.55 0.61
0.10 A{1.02 1.15 1.33 1.43 11.33 1.13 0.77 0.58 0.383 0.29 0.20 0.16 0.11
B{1.10 1.27 1.50 1.65 1.65 1.43 0.98 0.73 0.46 0.34 0.23 0.18 0.13
0.25 A}1.02 1.07 1.16 1.21 1.28 1.31 1.29 1.23 1.04 0.89 0.65 0.52 0.36
B{1.04 1.14 1.23 1.30 1.40 1.46 1.49 1.46 1.29 1.11 0©0.83 0.66 0.46
0.50 Al1.01 1.05 1.12 1.15 1.16 1.15 1.07 0.98 0.73 0.65 0.48 0.43 0.45

B|0.48 1,09 1.18 1.24 1.30 1.32 1.32 1.28 1.20 1.15 1.07 0.86 0.80

0.75 A|1.02 1.08 1.11 1.10 1.03 0.97 1.17 1.52 1.81 1.52 0.96 0.70 0.46
B|0.08 1.23 1.46 1.59 1.66 1.43 2.24 2.20 1.64 1.20 0.75 0.57 0.490
0.90 A{1.07 1.35 1.90 1.76 ©0.73 0.46 0.29 0.23 O0.18§ 0.16 0.13 0.12 0.11
B(0.03 0.21 0.30 0.60 0.47 0.36 0.25 0.21 0.17 0.15 0.13 0.12 0.11
0.95 A|1.02 1.02 0.28 0.17 0.11 0.09 0.08 0.07 .06 0.06 0.06 0.05 0.05

oo

B|0.02 0.05 0.21 0.16 0.1%f 0©0.09 0.08 0.07 .06 0.06 0.06 0.05 0.05

A = (MSE 5 Y/(MSE Q ), B = (MSE 6 Y/MSE Q )
n n n n

TABLE 6. RATIOS OF MEAN SQUARE ERRORS WITH TRIANGULAR KERNEL

LIFE DISTRIBUTION: W(2,1) , CENSORING DISTRIBUTION: E(0.425)
n = 100 (APPROX. 30% CENSORING)

h
P 0.01 0.05 0.11 o0.15 0.21 ©0.25 0.31 ©0.35 0.41 0.45 0.51 0.55 0.61
0.10 Al1.02 1.14 1.34 1.43% 1.3% 1.42 1.56 1.74 2.13 2.48 3.02 3.27 3.16
B{0.82 1.13 1.23 1.16 1.07 1.08 1.20 1.34 1.67 1.99 2.63 3.10 3.56

0.25 A}1.02 1.08 1.16 1.23 1.34 1.41 1.46 1.45 1.42 1.42 .47 1.54 1.7
B|0.47 1.09 1.17 1.22 1.29 1.32 1.28 1.23 1.17 1.15 1.17 1.22 1.36

[

0.50 A[1.03 1.07 1.14 1.18 1.24 1.28 1.33 1.36 1.39 1.39 1.36 1.45 1.73
B|0.11 1.06 1.13 1.18 1.25 1.30 1.37 1.42 1.50 1.55 1.60 1.66 1.73
0.75 A|1.03 1,07 1.13 1.16 1.17 1.10 1.33 1.40 0.77 0.46 0.25 0.18 0.12
B(0.04 1.05 1.15 1.22 1.32 1.36 1.44 1.31 0.70 0.44 0.24 0.17 0.12
0.90 A|1.04 1.14 1.20 1.18 0.33 0.19 ©0.11 0.08 0.06 ©0.06 0.05 0.04 0.04
B|0.02 1,02 1.25 1.09 ©0.35 0.20 ©0.11 ©0.09 ©0.07 ©0.06 ©0.05 ©0.04 ©0.04
0.95 A|1.07 1.23 ©0.38 0.17 o0.i0 0.08 ©0.06 0.05 0.05 0.04 0.04 0.04 0.04
B|0.02 0.54 0.45 0.20 0.11 0.08 0.06 ©0.05 0.05 0.05 0.04 0.04 0.04

A = (MSE 6 J/IMSE Q ), B = (Msx-:é )/(Msza )
n n n n
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TABLE 7. RATIOS OF MEAN SQUARE ERRORS WITH TRIANGULAR KERNEL
LIFE DISTRIBUTION: G{2,1) , CENSORING DISTRIBUTION: E(0.415)
n = 100 (APPROX. 50% CENSORING)
h
P 0.01 0.05 ©0.11 0.15 0.21 6.25 0.31 0.35 0.41 0.45 0.51 0.55 0.61
0.10 A|1.04 1.15 1.39 1.58 1.80 1.96 2.23 2.37 2.36 2.i5 1.66 1.33 0.92
0.78 1.23 1.41 1.46 1.55 1.69 2.03 2.31 2.69 2.75 2.40 1.98 1.37
0.25 A|1.02 1.08 1.17 1.23 1.34 1.41 1.54 1.62 1.72 1.78 1.81 1.78 1.60
0.21 1.16 1.25 1.32 1.42 1.49 1.57 1.62 1.71 1.80 1.95 2.06 2.16
0.50 A{1.01 1.06 1.12 1.16 1.20 1.22 1.2% 1.17 1.07 0.97 0.79 0.76 0.88
0.04 1.11 1.24 1.30 1.39 1.44 1.53 1.58 1.65 1.65 1.63 1.56 1.61
0.75 A|1.01 1.07 1.14 1.14 1.08 0.99 1.14 1.40 1.55 1.31 0.87 0.65 0.45
0.02 0.69 1.23 1.33 1.32 1.16 1.75 1.73 1.37 1.06 0.70 0.54 0.39
0.90 A|1.05 1.23 1.47 1.85 1.27 0.86 0.55 0.44 0.34 0.29 0.25 0.23 0.20
0.02 0.31 0.60 1.27 1.04 0.77 0.52 0.43 0.33 0.29 0.25 0.23 0.20
0.95 A|1.06 1.26 0.82 ©0.50 0.32 0.26 0.21 0.19 0.17 0.16 0.15 0.14 1.13
0.03 ©0.13 0.82 0.57 0.36 0.29 0.23 ©0.21 0.18 0.17 0.15 0.14 1.13
A = (MSE Q )/(MSE Q }, (MSE Q )/(MSE Q )
n n n n
TABLE 8. RATIOS OF MEAN SQUARE ERRORS WITH TRIANGULAR KERNEL
LIFE DISTRIBUTION: L(0,1), CENSORING DISTRIBUTION: E(0.274)
= 100 (APPROX. 30% CENSORING)
h
P 0.01 ©0.05 ©0.11 0.15 0.21 0.25 0.31 0.35 0.41 0.45 0.51 0.55 0.61
6.10 A{1.07 1.1 1.41 1.57 74 1.85 2.00 1.98 1.65 1.31 0.85 0.62 0.39
1.11 1.24 1.43 1.48 56 1.69 1.97 2.13 2.03 1.70 1.11 0.80 0.49
0.25 A{1.02 1.08 1.16 1.20 25 1.27 1.30 1.29 1.20 1.08 0.84 0.68 0.45
0.95 1.14 1.23 1.29 36 1.41 1.47 1.49 1.44 1.35 1.10 0.89 0.61
0.50 Af1.03 1.07 1.11 1.11 07 1.01 0.88 0.76 0.56 0.42 0.25 0.20 0.18
0.41 1.17 1.23 1.26 27 1.24 1.13 1.03 0.81 0.66 0.45 0.32 0.26
0.75 A|1.02 1.06 1.04 0.96 69 0.49 0.43 0.50 0.71 0.90 1.14 1.15 0.95
0.10 1.27 1.41 1.46 43 1.37 0.90 0.91 1.12 1.28 1.34 1.21 0.92
0.90 AJ2.10 1.21 1.28 1.86 2.34 1.90 1.26 0.99 0.74 0.64 0.53 0.48 0.42
0.12 1.79 2.54 3.32 2.44 1.79 1.18 0.94 0.72 0.62 0.52 0.47 0.42
0.95 A[1.07 1.31 1.58 1.10 0.70 0.57 0.46 0.41 0.36 0.34 0.31 0.30 0.28
0.10 0.51 1.51 1.07 0.70 0.58 0.47 0.42 0.37 0.34 0.31 0.30 0.28
A= (MSE Q )/(MSE Q }, B = (MSE Q })/(MSE Q }
n n n n




12

TABLE 9. RATIOS OF MEAN SQUARE ERRORS WITH TRIANGULAR KERNEL

LIFE DISTRIBUTION: 1G(3,1) , CENSORING DISTRIBUTION: E(0.182)
n = 100 (APPROX. 30% CENSORING)

.05 . .25 .31
.12 . . . .49 .50
.20 . .40 .53

.05 . . .02 .93
.12 . . . .18 .11

. .04 . . . .81 .61
.71 .17 . . .12 .04 .84

.04 .07 . . .55 .41 .38
.17 .58 . . .82 .80 .10

.07 .27 . . .60 .20 .57
.16 .11 . . .42 .92 .40

.04 .17 . . .42 .35
.10 .23 . . .41 .35

.30

[}
0.30

= (MSE 6 )/(MSE Q ), B = (MSE Q@ )/{(MSE Q )
n n n n
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should be near one for small h. This is not the case for an' as
pointed out by Padgett (1986).

With respect to the kernel functions, the results are quite
similar for all three. Howvever, the bandwidth value giving the
largest ratio of mean squared errors is generall& slightly larger
for the uniform kernel than for the triangular or quadratic
kernels, indicating that more smoothing is needed.

In all cases, the bandwidth value giving the largest ratio of
estimated mean squared errors for 0n tends to increase with p up
to about p=0.75, and then decrease for larger p. This indicates
that more smoothing is needed in the middle of the distribution
than in the tails to decrease the mean squared error of the
estimator.

Increasing the amount of censoring from 30% to 50% seems to

have little effect on the estimated ratios.

4. BANDVIDTH SELECTION USING THE BOOTSTRAP

The simulation results of Section 3 indicate reasonable
ranges of the bandwidth to use in practice, if the forms of the
lifetime distribution and censoring mechanism are known. However,
in general, the forms of the distributions are not known; this is
the reason for using a nonparametric estimator. Since the
proposed estimator Qn(p) is nonparametric, it is desired to use a
bandwidth selection method which does not require the parametric
assumptions of the results of Section 3. That is, given the
right-censored sample of size n, what is an "optimal" bandwidth
value to use in calculating On(p)? The bootstrap for censored
data provides a solution to this problem for a minimum mean
squared error optimality criterion.

It is proposed to estimate the mean squared error of Qn(p),
MSE (Qn(p)), as a function of H (for fixed p) by the bootstrap
method and to choose the value of h which minimizes the estimated
MSE (Qn(p)). Let (xi,ai), i=1,...,n, denoie :he observed
censored sample. A bootstrap replicate (xi,éi), i=1,...,n, is
obtained by randomly drawing with replacement from the set of n

bivariate observations (xi,Si). Note that this simple resampling
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scheme makes no use of the estimated survival distribution or
censoring distribution, but has been shown to give the same
results as the bootstrap based on a resampling scheme which
reflects the censoring structure of the data (see Efron, 1981).
Denote the product limit estlmate of Q (p) based on a

bootstrap sample by Q (p) and let Q (p) denote the kernel estimate

from bootstrap data; that is,
* -1, °%
Q' (p) = h71fy Q7(t) K((t-p)/h)dt.
Based on a large number, B, of bootstrap replicates, an estimator

of the variance of Qn(p) is

- B B
- * 2 * 2
V(h) = (B-1)7N( I 1Q) (1% - [ £ a}(p)1%/B), (4.1)
i=1 i=1
and the bootstrap estimate of Bias[Qn(p)] is
. 1B
By(h) = B zo 1(P) - Q (p).
i=1 ”
Denote the bootstrap estimate of the mean squared error of Q (p),
MSBq_(pyr B HSEq (p)°

In many of the simulations described in Section 3, as with
most kernel-type function estimators, for fixed p, as the band-
width h increased, the square of the bias of Qn(p) tended to
increase while the variance tended to decrease. Thus, MSEQ (p)(h)
should be a decreasing and then increasing function of h, alld the

bootstrap estimate, MSE )(h), should yield a value of h giving

Q (p

an approximate minimum value of MSEQ (p )(h). However, in many

situations encountered in this study, MSE ( ) (h) was strictly

decreasing in h. Thls was due to both Q (p) and the estimate from
a bootstrap sample, Q (p), being oversmoothed and hence quite
close together. This resulted in a poor estimate of the bias in a
"variance—plus—biasz" estimation of the mean squared error of
Qn(p). Therefore, the bootstrap estimate of bias was modified by
using the PL quantile function from (xi,si), which does not depend

on h, instead of Qn(p). Hence, the bias estimate was modified to
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bandwidths from Table 2, hR(p), and h(p) from Figure 1. Note the
very close agreement of these bandwidth values. Figure 3 shows
the true quantile function Q° and the kernel estimate Qn(p) using
the estimates of h as 0.17 (0<p<.2), 0.23 (.2¢p<.5), 0.25
(.5¢p<.7), 0.47 (.7£p<.8), 0.11 (.8<p<.95), and 0.07 (.95<p<1.0).
In general, a value of h(p) can be estimated for each value of p
for which Qn(p) is to be plotted.
TABLE 10. Comparison of Best Bandwidths from
Figures 1 and 2
P he(p) h(p)

0.10 0.15 0.17

0.25 0.25 0.23

0.50 0.21 0.25

0.75 0.45 0.47

0.90 0.15 0.11

0.95 0.07 0.07
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B

N .
ii:loni(p) - Q. (p).

As h gets large (i.e. the kernel estimate is oversmoothed),

- -1
B,(h) = B

[B (h)]2 tends to increase. A bootstrap estimate of MSE (h)
2 . Q. (p)
then obtained by

* - -2
MSEQn(p)(h) = V(h) + By(h). (4.2)

The value of h is chosen to minimize (4.2), yielding an estimated
bandwidth h(p).

To illustrate the procedure and to give an indication of how
well it performs, a random sample of size n=100 was generated from
the exponential life distribution E(1) with E(3/7) censoring

distribution as in Table 2. The functions MSEs (p)(h) from
n

B=300 bootstrap samples at each h and p are shown in Figure 1.
The triangular kernel function was used in these calculations.
The estimated ratios of mean squared errors from Table 2 are shown

as functions of h in Figure 2. Table 10 shows the "best"
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Figure 1. Bootstrap Estimates of MSE(Q,) vs. h for
Simulated Sample
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Figure 2. Simulated MSE Ratios
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Figure 3. Quantile Estimate from Simulated
Exponential Data
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5. INTERVAL ESTIMATION

The bootstrap can also be used to obtain interval estimates

for Qo(p). Assume that h has been determined and p is fixed.

A AERREEE LSRR

The bootstrap estimate of the standard error of Qn(p) given

1]
e a2 »

by equation (4.1) can be used to define an approximate (1-o)10C%

confidence interval for Oo(p),

KRR

w2 Y ] : (5.1)

vhere 24 _ /2 is the (1-o/2) percentile point of the standard

[on<p> S 2y, WU, Q(p) + 2

normal distribution. This interval requires no additional
bootstrap calculations than those involved in selecting h. Efron
(1986) has shown that the symmetric interval of the form (éi;z) is
Ycorrect" if the statistic é has a normal distribution.

Asymptotic normality of Qn(p) had been established (Lio, Padgett,
and Yu, 1986), but for small to moderately large samples and p
near 0 or 1 there is some skewness in the distribution of Qn(p).
Furthermore, Efron’s results on the validity of the standard
bootstrap interval (éi;z) refer to the parametric bootstrap in
which resampling is from the parametric MLE of the distribution
function. Although easily computable, the interval given in (5.1)
may be inaccurate, since small sample skewness of the distribution
of On(p) will not be reflected. Since the nonparametric bootstrap
is used here, an interval which requires no normality (or
symmetry) assumptions may be more appropriate in this setting of

quantile estimation.

The above discussion suggests a second approach based on the

bootstrap percentile interval method. The idea is to use the
*
bootstrap values Qni(p)’ i=1,...,B, to estimate the actual
distribution, G, of Qn(p). Given n and p, the (Monte Carlo
estimate of the) bootstrap distribution of Qn(p) is defined as
*
#Q), (p) )
* *
G (k) =P QX)) =—Fg— . (5.2)

WVhile B = 300 is sufficient to estimate standard errors, a larger
*
number of bootstrap values Qni(p) is needed to obtain adequate

estimates of G. When B is too small, the bootstrap may yield poor
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estimates of the tail behavior of G. Generally, B=1000 is
considered large enough.

The percentile interval uses quantiles of G* to estimate the
quantiles of the true distribution G. An approximate 100(1-o)%
confidence interval for Qo(p) is defined by

" Yo, 6" 1-0]. (5.3)
Note that this interval requires additional computations to those
involved with bandwidth selection, but these calculations are
minimal since the value of h has been determined.

As an illustration of the methods presented in Section 4 and
equations (5.1) and (5.3), consider the censored data set of n=100
observations given in Table 11. This data set was generated from
the exponential life and censoring distri?utions used in Table 2

(that is, 30% censoring). The values of h(p) were determined from

TABLE 11. Simulated Censored Sample

X§ 81 X5 81 X5 61 X5 81
0.447 0 0.400 1 0.956 0 0.449 0
0.773 1 0.042 1 0.005 1 0.483 1
0.750 1 0.532 1 0.908 1 0.302 0
0.033 1 0.308 1 0.829 0 0.840 1
1.049 1 0.077 0 0.580 0 0.020 0
0.397 1 0.884 1 0.305 1 0.157 1
0.946 1 0.137 1 0.095 0 0.712 1
0.924 1 0.244 1 0.210 1 0.401 1
0.242 1 1.611 1 0.121 1 0.453 1
0.993 1 2.051 0 0.657 1 2.693 1
0.241 1 0.615 1 0.167 1 1.097 0
0.503 0 1.007 0 0.332 1 1.258 1
0.151 0 1.483 1 1.950 0 0.392 1
0.089 1 0.605 1 0.569 1 0.050 1
1.163 0 1.060 1 0.417 1 0.303 1
1.074 0 0.708 0 0.736 0 0.084 1
0.543 1 0.333 0 0.072 0 0.257 1
0.183 1 1.261 1 2.792 1 1.096 0
0.373 1 0.815 1 1.358 1 0.443 1
0.848 1 0.224 0 1.609 0 3.616 1
1.272 1 0.455 1 0.695 0 0.139 1
0.219 1 0.604 1 1.121 1 0.253 1
0.985 0 1.457 1 0.094 1 0.156 0
0.745 1 0.975 0 0.903 1 0.647 1
2.783 1 0.791 1 1.054 1 0.167 0

...........................................
...............................

SR IRRono

a AN VLWL .

~ " _of




21

B=300 bootstrap samples as described in Section 4 for p=.10, .50,
| .75. For the chosen value ﬂ(p), the estimate Qn(p) was calculated
‘ and the bias, the standard error, and the two approximate 95%
confidence intervals described above were obtained from B=1000
bootstrap samples. The results are given in Table 12. Note that

the intervals from (5.3) are shifted slightly from those given by

IJ)._IJ)J

(5.1), indicating the skewness of the distribution of Qn(p).

TABLE 12. Computation Results for Simulated Data

; p Qo(p) A(P) On(p) Interval (5.1) Interval (5.3)

0.10 0.1054 0.17 0.1462  (0.0849,0.2076) (0.0953,0.2194)
0.50 0.6931 0.23 0.7440  (0.5781,0.9099) (0.5903,0.9118)
,; 0.75 1.3863 0.49 1.2605 (0.9466,1.5744)  (0.9735,1.5862)

The performance of the bootstrap percentile interval (5.3)
depends on how well the bootstrap distribution of Q:(p)
approximates the distributioz of Qn(p). Asymptotic validity of
the bootstrapped estimator Qn(p) can be established.

- First, note that

: a7 (p) - a%e) | < QS - . (] + lo () - () |-
. For the first term on th? righf—hand—side, vrite

: Q(p) - Q (p) = J3lQ}(t)-Q (t)]h~(R((t-p)/h)dt

5 1a) (1)-q) (p) Th™IR((t-p) /h)dt

n5la,(p)-q, () Th™'K((t-p)/h)dt

v [} (p)-Q (p)] gh 'K((t-p)/h)dt

_ -
= n b11+n l/212«»13,

. “x -

N wvhere q:(t) = n%[On(t)—Qo(t)] and qn(t) = n%[On(t)~Qo(t)] denote

S the bootstrapped PL quantile process and the PL quantile process,
respectively. Now, by Lemma 2 of Padgett, Lio, and Yu (1986),

under the conditions on h and K stated in Section 2 and if Fo is

+

+

’
continuous with density fo, fo(Qo(p))>0, if fo is continuous, and

H(TF ¥<1, where TF = sup{t:Fo(t)<1}, |12| » 0 in probability as
o o

AR AR

L% B ll."..'

.04
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n+>. Also, by a proof similar to that of Lemma 2 of Padgett, Lio, e
1Y
and Yu (1986) using the results of Horvath and Yandell (1986), it ﬁ:
can be shown that |11|90 in probability as n-e. ;;
>
Now, under the conditions of Corollary 2.2 of Horvath and *
Yandell (1586), v o 5;
F_(Q°(p))-p ' 35
. - "% )
lo_ (-0 (P | ¢ |[———— - [Q°(P)-0 ()] s
£_(0°(p) 2
4

F_(Q%(p))-p )

b - 10%(P)-0_(p)]
£,(Q7(p))

- o ok 0
F_(Q%(p))-F (a°(p))

£,(2°(p)) -

= O(n—%(log n)%) + O(n—3/4(log n)5/4)a.s. i;

for each p such that F(Q°(p))<l. Thus, for such p, |0:(p)—0(p)[ﬂ0 g;

in probability. .‘
Finally, since ]Qn(p)—Oo(p)Ieo in probability (see Padgett,
1986), for p so that F(Q°(p))<1, |0"(p)-0°(p) |40 in probability.

Thus, the bootstrapped percentiles converge to the value

Oo(p), providing large sample justification of the percentile
interval. It should be noted that the bootstrap convergence
results presented here refer to the theoretical bootstrap
distribution of O;(p) (when B=«), which in practice is estimated

by Monte Carlo methods (with B=1000) as described earlier.
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